WELD 111 Basic Oxyacetylene Welding

Credit Hours: 3

Scheduled hours per week
 Lecture: .5
 Lab: 2.5
 Other: 0

Catalog Course Description:
Principles of oxyacetylene welding, cutting, and brazing. Nomenclature of the equipment, assembly, care, and safety.

Prerequisites: None

Corequisites: None

Course learning Outcomes:
Students should learn the hands on skills required to set up and operate an oxyacetylene torch and will be proficient with cutting and weld in this processes.
Students will also learn about the set up and use of plasma cutting and also carbon arc gouging.

Topics to be studied:
1. Oxy-fuel welding and cutting safety
2. Safe handling of cylinders
3. Welding equipment assembly
4. Carbon arc gouging setup
5. Carbon arc gouging on carbon and S.S. steel
6. Plasma arc cutting safety
7. Plasma arc safety
8. Plasma arc cutting carbon ,S.S. and Aluminum
9. Proper use of the plasma cutting process

Relationship of course to program outcomes:

Students will be proficient with “hands-on” skills in all welding possesses (SMAW, GTAW, FCAW, GMAW)	x
80% of all students will pass ASME welding test on plate 2G,3G and 4G positions and or 6G pipe test	x
Students will be able to perform destructive testing and recognize whether it passes or fails and also the daily functions of a (CWI)	x
Student will know the technology terminology used in the welding industry	x
Students will be able to demonstrate the ability to work ethically, effectively, and respectively with people of diverse backgrounds and with people who have different roles, social affiliations, and personalities.	x

Approved by Curriculum Committee
Revised 9/09
This course meets the following General Education Outcome(s):

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition and Rhetoric</td>
<td>Students illustrate a fundamental understanding of the best practices of communicating in English and meet the writing standards of their college or program-based communication requirements.</td>
<td></td>
</tr>
<tr>
<td>Science & Technology</td>
<td>Students successfully apply systematic methods of analysis to the natural and physical world, understand scientific knowledge as empirical, and refer to data as a basis for conclusions.</td>
<td>X</td>
</tr>
<tr>
<td>Mathematics & Quantitative Skills</td>
<td>Students effectively use quantitative techniques and the practical application of numerical, symbolic, or spatial concepts.</td>
<td>X</td>
</tr>
<tr>
<td>Society, Diversity, & Connections</td>
<td>Students demonstrate understanding of and a logical ability to successfully analyze human behavior, societal and political organization, or communication.</td>
<td></td>
</tr>
<tr>
<td>Human Inquiry & the Past</td>
<td>Students interpret historical events or philosophical perspectives by identifying patterns, applying analytical reasoning, employing methods of critical inquiry, or expanding problem-solving skills.</td>
<td></td>
</tr>
<tr>
<td>The Arts & Creativity</td>
<td>Students successfully articulate and apply methods and principles of critical and creative inquiry to the production or analysis of works of art.</td>
<td></td>
</tr>
</tbody>
</table>

5/3/2016

Special projects or requirements of the course:
Research paper
Equipment “show and tell”

Additional information:
None

Assessment of Outcomes:
Outcomes will be measured by testing (quizzes and final exam)

Prepared by: Joseph F. Hunt

Date: 10/18/2017

Approved by Curriculum Committee
Revised 9/09