PSCI 101 Fundamentals of Physical Science

Credit Hours: 4

Scheduled hours per week
- Lecture: 3
- Lab: 2
- Other: N/A

Catalog Course Description: Introduction to the basic concepts of physics, chemistry, geology, oceanography, meteorology, and astronomy. Scientific data collection and analysis will be stressed in lab.

Pre-requisites: N/A

Co-requisites: 101L Fundamentals of Physical Science Laboratory

Course Learning Outcomes:
- Ability to demonstrate critical thinking by analyzing data to infer logical conclusion.
- Ability to demonstrate and practice the scientific method of investigation of a problem or idea.
- Ability to collect accurate scientific data by practicing accurate data collecting techniques.
- Practice experimentation and/or observation of nature in order to evaluate scientific questions or scientific problems.
- Ability to analyze data by using graphing and other techniques to infer general trends in data and make inductive inferences.
- Ability to make hypothetical-deductive predictions relative to scientific concepts and understand how to test those predictions.
- Capability to correctly practice the steps involved in solving problems with the scientific formulas.
- Ability to take measurements and do calculations using the basic metric system of measurement.
- Ability to express numbers in scientific notation and perform calculations using numbers expressed in scientific notation.
- Ability to understand, demonstrate, and analyze principles, laws, and theories of physics and chemistry.
- Ability to understand, demonstrate, and analyze the fundamental principles, laws, and theories of physics and chemistry.
- Ability to understand, demonstrate, and analyze the fundamental principles, laws, and theories of geology, oceanography, meteorology, and astronomy.
- Objectively evaluate and suggest possible solutions to problems relative to the Earth’s environment, resources, and environmental issues.
- Demonstrate an understanding of Earth’s origin, history, composition, and internal and external process.
- Demonstrate an understanding of Earth’s atmosphere and its relation to climate and water.
- Demonstrate an understanding of the relationship of Earth to the Universe as a whole.

Topics to be studied:
- Newton’s universal laws, laws of motion, and momentum
- Work, heat and temperature
- Nuclear reactions
- Sound and light
- Electricity
- Molecular structures, chemical bonds and reactions
- Water chemistry and organic chemistry
- Rocks and minerals
- Weathering and erosion, running water and groundwater
- Glaciers and deserts
- Plate tectonics, volcanic activity, earthquakes, and mountain building
- Geologic time, relative and radiometric dating techniques
- Structural geology, geologic and topographic maps,
- Earth resources and environmental issues
- Origin of the earth and solar system.

Relationship of Course to Program or Discipline Learning Outcomes:

<table>
<thead>
<tr>
<th>Relationship of Course to Science Learning Outcomes:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will learn the process and reasoning behind the Scientific Method and be able to conduct experiments that meet the requirements of the model.</td>
<td>X</td>
</tr>
<tr>
<td>Students exhibit the basic safety-related rules and regulations of working in the lab.</td>
<td>X</td>
</tr>
<tr>
<td>Students be able to recount the basic safety tenants associated with a specific scientific discipline.</td>
<td>X</td>
</tr>
<tr>
<td>Students will become proficient at Science Writing.</td>
<td>X</td>
</tr>
<tr>
<td>Students will recognize and identify the applications of their specific discipline in the ‘real world.’</td>
<td>X</td>
</tr>
<tr>
<td>Students will accurately recount important milestones in the history of scientific inquiry in their discipline.</td>
<td>X</td>
</tr>
<tr>
<td>5/3/2016</td>
<td></td>
</tr>
</tbody>
</table>

Relationship of Course to General Education Learning Outcomes:

Composition and Rhetoric Students illustrate a fundamental understanding of the best practices of communicating in English and meet the writing standards of their college or program-based communication requirements.	X
Science & Technology Students successfully apply systematic methods of analysis to the natural and physical world, understand scientific knowledge as empirical, and refer to data as a basis for conclusions.	X
Mathematics & Quantitative Skills Students effectively use quantitative techniques and the practical application of numerical, symbolic, or spatial concepts.	X
Society, Diversity, & Connections Students demonstrate understanding of and a logical ability to successfully analyze human behavior, societal and political organization, or communication.	X
Human Inquiry & the Past Students interpret historical events or philosophical perspectives by identifying patterns, applying analytical reasoning, employing methods of critical inquiry, or expanding problem-solving skills.	X
The Arts & Creativity
Students successfully articulate and apply methods and principles of critical and creative inquiry to the production or analysis of works of art.

| 5/3/2016 |

Special requirements of the course:
N/A

Additional information:
N/A

Prepared by: Valerie Keinath

Date: 10/20/2017